Cryogenic Wet-Ice Blasting
- Process Conditions and Possibilities

Magneto-Abrasive Machining for the Mechanical Preparation of High-Speed Steel Twist Drills

Dipl.-Ing. Florian Welzel
Cryogenic wet-ice blasting - process conditions and possibilities

Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Dr.-Ing. K. Schmidt
Dr.-Ing. Th. Emmer
Dipl.-Ing.(FH) M. Petzel M.Sc.
Fields of application:
- Deburring
- Cleaning
- Surface treatment

Burr at borehole (left), chip in fluidic system (right)

Extra expenses in production due to burrs and chips

Source: Ergebnisbericht Spansauber, TU Kaiserslautern, FBK, J.C. Aurich, 2006
Structure:

1. Goals of cryogenic wet-ice blasting (in short WIB)
2. Working Principles
3. Process description of WIB
4. Experimental Results
5. Conclusions

Ice particle production machine in the IFQ
„Cryo-Tank“ for wet-ice blasting - WIB
1. Goals of Cryogenic wet-ice blasting WIB

- Simultaneous deburring and cleaning of highly complex and highly stressed components such as control blocks and engine parts
- Deburring without solid residues and required following cleaning
- Defined blasting particle size and hardness
- Limited use of chemical additives - emulsion
- No damage at the workpiece surface
- Potential for surface smoothing
- No defined edge geometry

Source: SKL-Maschinenbau GmbH
2. Working Principles

The size of the transferred energy is dependent on the:

- particle energy,
- properties such as grain shape of the abrasive, grain materials and grain hardness,
- angle of impact
- properties of the blasted surface.

The particle energy is calculated according to the basic physical formula

\[E_{\text{kin}} = \frac{1}{2} \cdot m \cdot v^2 \]

and thus grows proportionally with the particle mass and the square of the particle velocity.
In case of cryogenic wet-ice blasting (WIB) there are some other effects:

- temperature-induced stress on the surface
- low temperature embrittlement of the ground material
- Peening pressure of the multiple fluid shock waves
- Jetting pressure of the molten water on the surface

Based on: F. W. Bach, University Hannover, IW
Ice particles as a blasting abrasive

“An ideal blasting abrasive should have an edged form, has a hardness of at least 6 Mohs and disintegrates into gas at room temperature completely” [J. Haberland].

![Graph showing Mohs hardness of wet ice](image)

The Mohs hardness of ice was checked and confirmed experimentally.
3. Process description of WIB

Manufacturing process of cryogenic wet-ice particles

• The “Cryo-Tank” is cooled down via a ring tube in the upper part of the system by liquid nitrogen LN\(_2\) till at least -120 °C.

• Water atomizes over a full cone nozzle in the lid of the system and freezes in the cold atmosphere.

• Frozen ice particles accumulate in the lower part of the equipment in the hopper, that feeds them to the outlet opening.
Jet process

Water

H₂O

„Cryo-Tank“

Liquid

Nitrogen LN₂

p₁ = p₀

-100 °C

p₀ = 1

Compressed air

Nozzle

Cryogenic wet-ice particles

Workpiece

Phase 1: removal

Phase 2: rubbing

Phase 3: flush

Source: Piller Entgrattechnik
Cryogenic ice particles - „Cryo-Tank“

Cryogenic ice particles in the „Cryo-Tank“ (view from the top)

Free flowing ice particles
Cryogenic ice particles - Analysis

Form: spherical
Temperature: -100 °C
Mohs hardness: 6-7
Temperature resistance: stable
Free flowing properties: such as dry sand
3. Experimental Results

Analysis the abrasiveness of cryogenic ice particles - Equipment

Injector blasting cubicle for practical experiments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>test specimen</td>
</tr>
<tr>
<td>2</td>
<td>fixture</td>
</tr>
<tr>
<td>3</td>
<td>nozzle</td>
</tr>
<tr>
<td>4</td>
<td>ice particles</td>
</tr>
</tbody>
</table>

Injector blasting cubicle (view inside)
Nozzle handling with cryogenic ice particles
Measurement equipment for burr measuring

3D surface measurement station MikroCAD (GFMesstechnik), based on fringe projection
Results of deburring with cryogenic ice particles - metallic materials

<table>
<thead>
<tr>
<th>Ice temperature [°C]</th>
<th>variable (-60; -120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet time [sec]</td>
<td>variable (40; 80)</td>
</tr>
<tr>
<td>Jet pressure [bar]</td>
<td>15</td>
</tr>
<tr>
<td>Jet angle [°]</td>
<td>70</td>
</tr>
<tr>
<td>Jet distance [mm]</td>
<td>60</td>
</tr>
<tr>
<td>Ice particle size [mm]</td>
<td>0.1 - 0.7</td>
</tr>
<tr>
<td>Ice mass flow rate [kg/h]</td>
<td>50</td>
</tr>
<tr>
<td>Diameter air nozzle [mm]</td>
<td>4</td>
</tr>
<tr>
<td>Diameter jet nozzle [mm]</td>
<td>10</td>
</tr>
<tr>
<td>Ice particle speed [m/s]</td>
<td>140</td>
</tr>
</tbody>
</table>

![Graph showing results of deburring with cryogenic ice particles](image)

Institute of Manufacturing Technology and Quality Management
Chair of Cutting Technology, Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Visual analysis - metallic materials

- The burr is completely removed from the borehole.
- WIB on metallic materials leaves just the burr root on the part.
- There is no more risk of loose material fractions during operation.
- The surface round the bore is not damaged.
- In case of metallic materials a large jet pressure is required.

Jet time: 40 sec, Wet-ice temperature: -60 °C, Jet angle: 70°,
Jet distance: 60 mm, Jet pressure: 15 bar, Particle speed: 140 m/s
Results of deburring with cryogenic ice particles - plastic materials

Test parameters WIB of plastic materials

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice temperature [°C]</td>
<td>-40; -80</td>
</tr>
<tr>
<td>Jet time [sec]</td>
<td>20; 40</td>
</tr>
<tr>
<td>Jet pressure [bar]</td>
<td>8</td>
</tr>
<tr>
<td>Jet angle [°]</td>
<td>70</td>
</tr>
<tr>
<td>Jet distance [mm]</td>
<td>80</td>
</tr>
<tr>
<td>Ice particle size [mm]</td>
<td>0.1 - 0.7</td>
</tr>
<tr>
<td>Ice mass flow rate [kg/h]</td>
<td>40</td>
</tr>
<tr>
<td>Diameter air nozzle [mm]</td>
<td>3</td>
</tr>
<tr>
<td>Diameter jet nozzle [mm]</td>
<td>6</td>
</tr>
<tr>
<td>Ice particle speed [m/s]</td>
<td>100</td>
</tr>
</tbody>
</table>

Polyethylene (PE)
Polypropylene (PP)
Visual analysis - plastic materials

- The burr is completely removed from the borehole.
- WIB on plastic materials is too abrasive and destroys the surface of parts.
- The bore and the surface round the bore is damaged.
- In case of plastic materials a small jet pressure and short machining times are required.

Jet time: 20 sec, Wet-ice temperature: -80 °C, Jet angle: 70°, Jet distance: 80 mm, Jet pressure: 8 bar, Particle speed: 100 m/s
Impact analysis of cryogenic ice particles

fixed Almen strip for peening intensity and drop impingement measurement

20 mm
Analysis of the impact of cryogenic ice particles on a surface via High speed camera

Camera: Photron Fastcam ultima APX

Chosen frame rate: 15,000 fps

Resolution: 256 x 256 pixel
Conclusions

• The practical studies have shown the feasibility of deep frozen wet-ice particles as an abrasive for deburring.

• With the use of deep frozen and cryogenic wet-ice as blasting abrasive the removal of burrs on multifaceted component geometries is possible.

• The temperature-dependent hardness and removal capacity of ice have been confirmed.

• The performance of the new method is promising in metallic materials and highly abrasive in softer materials.

• The impact behavior of an ice particle on a surface is defined in terms of four successive phases: flight, impingement, disintegration and expansion.
 - Ice particles plastically deform and do not bounce off the surface.
 - The spread of particulate matter is generally visible in all directions.
 - The largest particle volume moves in the inclined direction of the surface and is rubbing on it.
Outlook

• The process parameters related to WIB jet processing must be adapted to other materials to be processed.

• The performance of the WIB machining will be examined for other machining tasks:
 - surface finishing and surface preparation
 - decontamination and decoating of surfaces
 - cleaning of turbines or turbine parts

• Realization of a jet lance for machining bore intersections.
Magneto-Abrasive Machining for the Mechanical Preparation of High-Speed Steel Twist Drills

B. Karpuschewski (1)a, O. Byelyayeva, -V.S. Maiborodab

a Institute of Manufacturing Technology and Quality Management IFQ, Otto-von-Guericke-University of Magdeburg
b Institute of Mechanical Engineering, National Technical University of Ukraine “KPI”, Kiev

- Introduction

- Experimental setting

- Results

- Conclusion and outlook
Cutting process as a system

- **Input quantities**
 - Determined by:
 - Material
 - Tools
 - Machine setting
 - Characteristics of the machine
 - Supporting media

- **Process**
 - Process quantities describe:
 - Mechanical
 - Thermal
 - Chemical interactions during material removal

- **Output quantities**
 - Describe:
 - Workpiece
 - Tool
 - Chips
 - Machine
 - Supporting media after material removal
Cutting tool properties

- **Cutting tool**
 - Tool material
 - Tool geometry
 - Coating

- **Cutting parameters**

- **Coolant**
 - Macro geometry
 - Micro geometry of the cutting edges
 - Cutting edge radius
 - Cutting edge chipping
 - Cutting edge form
 - Quality of functional surfaces
Quality characteristics of a helical drill

- Radius of the cutting edge:
 - Sharp cutting edge
 - Rounded cutting edge

- Chipping of the cutting edge

- Quality of the tool surfaces:
 - Flank face margin/land
 - Rake face (chip space)

- Width of flank wear land
- Wear of chisel edge
- Crater wear
- Wear of the land (margin)
- Corner wear of cutting edge
Cutting edge preparation methods

- jet machining
- brushing
- magneto-abrasive machining
- immersed tumbling/drag finishing
Basic principle of magneto-abrasive machining

working gap - A_s

workpiece

ferromagnetic grains

magnetic poles

N

S
Commercial magneto-finishing system

source: Magnetfinish GmbH
Test system for magneto-abrasive machining with a ring-shaped configuration
Orientation of the drill in the MAM-system

-moving direction towards the drill point (→ d.p.)

-from the drill point (← d.p.)

outer pole shoe

15°

centred position (Z)

16

16

inner pole shoe

18 - 22°

5...8

shifted position (V)

6...10
Drill properties

<table>
<thead>
<tr>
<th>Twist drill type</th>
<th>N (normal)</th>
<th>Material composition HSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter D</td>
<td>6.8 mm</td>
<td>C 0.828</td>
</tr>
<tr>
<td>Number of cutting edges</td>
<td>2</td>
<td>Si 0.312</td>
</tr>
<tr>
<td>Drill-point angle σ</td>
<td>118°</td>
<td>Mn 0.283</td>
</tr>
<tr>
<td>Side rake angle γ_f</td>
<td>30°</td>
<td>P 0.001</td>
</tr>
<tr>
<td>Diminution</td>
<td>standard</td>
<td>Cr 3.86</td>
</tr>
<tr>
<td>Land width b_f</td>
<td>0.7 mm</td>
<td>Mo 4.56</td>
</tr>
</tbody>
</table>

![Diagram of drill properties](image)

Institute of Manufacturing Technology and Quality Management
Chair of Cutting Technology, Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Varied process parameters

<table>
<thead>
<tr>
<th>drill group</th>
<th>machining time [s]</th>
<th>drill position</th>
<th>powder type/ particle size [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>untreated drills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4x15 4x30</td>
<td>Z</td>
<td>P1 (splintered) 160/100</td>
</tr>
<tr>
<td>3</td>
<td>4x15 4x15</td>
<td>V</td>
<td>P2 (spherical) 315/200</td>
</tr>
<tr>
<td>4</td>
<td>- 4x15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4x10 4x20</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4x15 4x30</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4x10 4x20</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4x15 4x15</td>
<td>Z</td>
<td>powder P2 ≈ 95% mixture P1 ≈ 5%</td>
</tr>
<tr>
<td>9</td>
<td>- 4x15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Powder characteristics 1

powder P1 (splintered)

grain size: 160/100 μm

powder P2 (spherical)

grain size: 315/200 μm
Powder characteristics 2

powder P1 (splintered)

grain size: 160/100 μm

“pseudo alloy” resulting from spray melting

ferromagnetic matrix Fe-Si (2) with embedded carbide abrasive particles TiC (1)
Geometry measurements at the drill

- Cutting edge chipping \(R_t \)
- Surface roughness \(R_z \)
- Stylus fin
- Measuring direction
- Flank face
- Rake face
- Land (margin)
- Cutting edge radius \(r_n \)
- Corner edge roundness \(r_{cor} \)
Optical cutting edge measurement

- Camera view of a cutting edge
- Cutting edge with micro fringe projection
- Colour coded height image of the cutting edge
- Height image with inserted cutting lines
- Single cutting line presentation with radius determination
- 3D-contour of the cutting edge

Source: GFM
Cutting edge of a helical drill before and after MAM

grinding

MAM

50 µm
Cutting edge chipping for different drill groups

- Drill position “V”
- Drill D = 6.8 mm
- 18 measurements

- Powder mixture
 - 95% - P2
 - 5% - P1

- Mean value
- Standard deviation

Drill group:
- P1: 160/100
- P2: 315/200

Average cutting edge chipping (Rt) vs. drill group.
Cutting edge radii for different drill groups

- Drill position "V" with powder mixture:
 - 95% - P2
 - 5% - P1

Average cutting edge radius r_h

<table>
<thead>
<tr>
<th>drill group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius (µm)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
</tbody>
</table>
Determination of the corner edge rounding

ρ_{cor}
Corner edge roundness for different drill groups

![Graph showing corner edge roundness for different drill groups.](image)

- drill position “V”
- powder mixture
 - 95% - P2
 - 5% - P1
- P1 160/100
- P2 315/200

<table>
<thead>
<tr>
<th>Drill group</th>
<th>Average corner edge radius r_{cor} (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
</tr>
</tbody>
</table>
Influence of MAM on drill surface roughness

- untreated
- MAM (drill group 2)

<table>
<thead>
<tr>
<th>Surface Roughness Rz</th>
<th>Flank Face</th>
<th>Rake Face</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>2.5</td>
<td>3.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Mean value and standard deviation.

- rake face
- MAM

200 µm
Drill land roughness for different drill groups

- **Drill position “V”**
- **P1 160/100**
- **P2 315/200**
- Powder mixture: 95% - P2, 5% - P1
Drill wear measurement

land (margin)

flank face

marked line

chisel edge

major cutting edge

corner wear \(VB_E \)

wear pattern

\[a_0 - a \]

\[VB = a_0 - a \]

\[VB_E = a_0 - a_c \]

\(a_0 \) - distance between marked line and cutting edge in unworn condition
Corner wear depending on varying cutting edge geometry

Twist drill: HSS
D = 6.8 mm, type N
uncoated
workpiece: St 52
cutting parameters:
v_c = 30 m/min
f = 0.2 mm/rev
coolant: emulsion 5%

corner wear VBE

0.6

0.4

0.2

0.1

0

mm

0

2

4

6

8

10

14

tool life travel path L_f

r_{cor} = 59 \mu m
r_n = 16.5 \mu m

r_{cor} = 23 \mu m
r_n = 12.7 \mu m

r_{cor} = 33 \mu m
r_n = 13.7 \mu m

r_{cor} = 37 \mu m
r_n = 12 \mu m

r_{cor} = 43 \mu m
r_n = 18.2 \mu m

r_{cor} = 3 \mu m
r_n = 9.8 \mu m

ground
MAM drill group 2
MAM drill group 6
MAM drill group 3
MAM drill group 5
MAM drill group 9
 Modifications of initially sharp cutting edges

grinding

- a) $r_{cor} = 3 \, \mu m$
 - after 5 drillings

- b) $r_{cor} = 55 \, \mu m$
 - after 10 drillings

- c) $r_{cor} = 20 \, \mu m$
 - after 7 drillings

MAM

- after 10 drillings
 - 400 \, \mu m

Institute of Manufacturing Technology and Quality Management
Chair of Cutting Technology, Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Approximation of experimentally determined tool life

- Untreated (drill group 1): $V_{BE} = 0.52 \text{ mm}$, $r_{cor} = 3 \mu \text{m}$
- MAM (drill group 9): $V_{BE} = 0.19 \text{ mm}$, $r_{cor} = 35 \mu \text{m}$

Tool life travel path L_f = 6.72 m (240 holes)
Avoidance of the run-in period of drill wear by means of MAM

![Graph showing the comparison of untreated and MAM-treated tool wear with wear pattern images](image)

<table>
<thead>
<tr>
<th>wear pattern after first drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_{cor} = 3 , \mu m$</td>
</tr>
<tr>
<td>$r_{cor} = 59 , \mu m$</td>
</tr>
</tbody>
</table>

- **corner wear V_{BE}**
- **tool life travel path L_f**
- **run-in period**
- **regular wear**
- **progressive wear**
Concept of a new MAM system
Conclusion

- improvement of the quality of drill cutting edges and all surfaces
- reproducible generation of adapted cutting edge micro geometries
- realisation of cutting edge micro structuring and surface improvement in one process step
- increase of cutting edge and corner stability
- avoidance of the run-in period of drills
- increase of tool life of uncoated drills up 87%
- (2 times increase of the tool life of coated drills)
Wear behaviour of coated drills

- Untreated
- Micro blasting + TiN
- Micro blasting + TiN
- MAM + TiN
- MAM + TiN + MAM

- f = 0.2 mm/rev
- f = 0.25 mm/rev

Twist drill: HSS
D = 7.0 mm, type N
TiN coated
Workpiece: S 355
Cutting parameters:
- vc = 30 m/min
- f = variable
- Coolant: emulsion 5%

Institute of Manufacturing Technology and Quality Management
Chair of Cutting Technology, Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Micro geometry of a cutting edge

form factor $K = \frac{S_\gamma}{S_\alpha}$

- sharp cutting edge
- rake face
- profile of the cutting edge
- flank face

source: IFW
Principle of fringe projection

Source: GFM Teltow

CCD-camera (Charge-Coupled Device)

DMD-array (Digital Mirror Device)

Light source

Telecentric optical system

Measurement depth

Projection optics

3D-profile

Projection area

Measurement area

Camera axis

Sensor housing

Projection axis

Reference or 0-level

Source: GFM Teltow
Influence of Corner Edge Preparation on the Performance of Drills

Edge brushing of inclined driven tools

T1 = 1 min
T2 = 2 min
T3 = 3 min

Source: as ground R = 3 µm
R1 = 11 µm
R2 = 15 µm
R3 = 21 µm

Institute of Manufacturing Technology and Quality Management
Chair of Cutting Technology, Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Influence of edge preparation on the performance of coated inserts

Drag Finishing in polishing machine by special powder

with 2 driven axes

with 3 driven axes

source: FLATIT®

Institute of Manufacturing Technology and Quality Management
Chair of Cutting Technology, Prof. Dr.-Ing. habil. Prof. h.c. B. Karpuschewski
Influence of edge preparation on the performance of coated inserts

source: FLATIT®
Edge preparation with magnetic powder with robot manipulation for large scale tool production
Edge preparation of small tools (d > 1mm) with magnetic powder head as a „grinding wheel"

source: MF & Schütte